Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein.
نویسندگان
چکیده
The glycoprotein of vesicular stomatitis virus (VSV G) mediates fusion of the viral envelope with the host cell, with the conformational changes that mediate VSV G fusion activation occurring in a reversible, low pH-dependent manner. Based on its novel structure, VSV G has been classified as class III viral fusion protein, having a predicted bipartite fusion domain comprising residues Trp-72, Tyr-73, Tyr-116, and Ala-117 that interacts with the host cell membrane to initiate the fusion reaction. Here, we carried out a systematic mutagenesis study of the predicted VSV G fusion loops, to investigate the functional role of the fusion domain. Using assays of low pH-induced cell-cell fusion and infection studies of mutant VSV G incorporated into viral particles, we show a fundamental role for the bipartite fusion domain. We show that Trp-72 is a critical residue for VSV G-mediated membrane fusion. Trp-72 could only tolerate mutation to a phenylalanine residue, which allowed only limited fusion. Tyr-73 and Tyr-116 could be mutated to other aromatic residues without major effect but could not tolerate any other substitution. Ala-117 was a less critical residue, with only charged residues unable to allow fusion activation. These data represent a functional analysis of predicted bipartite fusion loops of VSV G, a founder member of the class III family of viral fusion proteins.
منابع مشابه
Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.
The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to...
متن کاملStructure of the prefusion form of the vesicular stomatitis virus glycoprotein G.
Glycoprotein G of the vesicular stomatitis virus triggers membrane fusion via a low pH-induced structural rearrangement. Despite the equilibrium between the pre- and postfusion states, the structure of the prefusion form, determined to 3.0 angstrom resolution, shows that the fusogenic transition entails an extensive structural reorganization of G. Comparison with the structure of the postfusion...
متن کاملThe Transmembrane Domain and Acidic Lipid Flip-Flop Regulates Voltage-Dependent Fusion Mediated by Class II and III Viral Proteins
Voltage dependence of fusion induced by class II and class III viral fusion proteins was investigated. Class II proteins from Ross River and Sindbus virus and a mutant class III protein from Epstein Barr virus were found to induce cell-cell fusion that is voltage dependent. Combined with previous studies, in all, four class II and two class III protein have now been shown to exhibit voltage-dep...
متن کاملMolecular and Cellular Aspects of Rhabdovirus Entry
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium b...
متن کاملCrystal structure of glycoprotein B from herpes simplex virus 1.
Glycoprotein B (gB) is the most conserved component of the complex cell-entry machinery of herpes viruses. A crystal structure of the gB ectodomain from herpes simplex virus type 1 reveals a multidomain trimer with unexpected homology to glycoprotein G from vesicular stomatitis virus (VSV G). An alpha-helical coiled-coil core relates gB to class I viral membrane fusion glycoproteins; two extend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 10 شماره
صفحات -
تاریخ انتشار 2008